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Stretchable electronics are of great significance for the development of the next-generation smart interactive systems. Here, we
propose an intrinsically stretchable organic tribotronic transistor (SOTT) without a top gate electrode, which is composed of a
stretchable substrate, silver nanowire electrodes, semiconductor blends, and a nonpolar elastomer dielectric. The drain-source
current of the SOTT can be modulated by external contact electrification with the dielectric layer. Under 0-50% stretching both
parallel and perpendicular to the channel directions, the SOTT retains great output performance. After being stretched to 50%
for thousands of cycles, the SOTT can survive with excellent stability. Moreover, the SOTT can be conformably attached to the
human hand, which can be used for tactile signal perception in human-machine interaction and for controlling smart home
devices and robots. This work has realized a stretchable tribotronic transistor as the tactile sensor for smart interaction, which
has extended the application of tribotronics in the human-machine interface, wearable electronics, and robotics.

1. Introduction

Stretchable electronics are grabbing more and more attention
for a wide range of applications in wearable devices, soft
mechanics, robotic skin, human-machine interfaces, and so
on [1–6]. To date, a series of stretchable functional devices
have been developed with prominent tactile-sensing proper-
ties based on various physical transduction mechanisms such
as piezoresistivity [7, 8], capacitance [9], magnetism [10, 11],
and optics [12]. However, most of the tactile-sensing mecha-
nisms for stretchable electronics are passive, lacking direct
interaction with human/environment [13–17]. This compli-
cates the process of information acquisition and further
influences the tactile perception ability of stretchable func-
tional devices. Therefore, developing stretchable electronics
with an active sensing mechanism is highly desired.

Since 2012, the triboelectric nanogenerator (TENG) as a
new energy technology derived from the Maxwell displace-
ment current has been invented by Wang et al. [18, 19],

which can effectively convert mechanical energy into electric-
ity [20–22]. In recent years, tribotronics as a new field has
been proposed by using the triboelectric potential generated
by TENG to control the carrier transport in semiconductors,
which has established the direct interaction mechanism
between human/environment and electronics [23–29].
Moreover, a variety of tribotronic functional devices have
been demonstrated for tactile perception and control, includ-
ing smart tactile switch [30], tactile-sensing arrays [31],
active modulation of conventional electronics [32], and
mechanosensation-active matrix [33]. In addition, tribotro-
nic devices have demonstrated the diversity of material selec-
tion [24–36], which is very promising for the intrinsically
stretchable electronics for active tactile sensing by further
coupling with stretchable materials.

Here, we propose an intrinsically stretchable organic tri-
botronic transistor (SOTT) without a top gate electrode,
which is composed of a stretchable substrate, silver nanowire
(Ag NW) electrodes, semiconductor blends, and a nonpolar
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elastomer dielectric. The drain-source current of the SOTT
can be modulated by external contact electrification with
the dielectric layer. Under 0-50% stretching both parallel
and perpendicular to the channel directions, the SOTT
exhibits good output performances. After being stretched to
50% for thousands of cycles, the SOTT can survive with
excellent stability. Moreover, the SOTT can be conformably
attached to the human hand, which can be used for tactile
signal perception in human-machine interaction and for
controlling smart home devices and robots. This work has
realized a stretchable tribotronic transistor as the tactile sen-
sor for smart interaction, which has extended the application
of tribotronics in human-machine interface, wearable elec-
tronics, and robotics.

2. Results and Discussion

2.1. Fabrication of the Stretchable Tribotronic Transistor.
Poly(3-hexylthiophene-2,5-diyl) (P3HT), as a polymer semi-
conductor, has a high hole mobility and a low band gap width
[37]. The P3HT nanofibril (P3HT-NF) combined with the
stretchable elastomer materials has high stretchability, which
is good for developing stretchable semiconductor devices [38,
39]. Among a lot of elastomers, the polydimethylsiloxane
(PDMS) with a simple preparation process can sustain large
strains. Moreover, the PDMS has a good triboelectric prop-
erty, which is good for tribotronic devices [40–42]. Ag
NWs have good conductivity, which have been widely used
in the field of stretchable electrodes [43, 44]. Therefore, in
order to obtain highly stretchable SOTT, we exploit the
P3HT nanofibril-percolated PDMS rubber composite as a
stretchable semiconductor, the Ag NWs dispersed within
the PDMS as a stretchable conductor, and the PDMS as a gate
dielectric. Through the contact electrification between the
external triboelectric layer and the PDMS gate dielectric layer,
the drain-source current of the transistor can be modulated.

The schematic illustration of the fabrication process for
the SOTT is shown in Figure 1(a). The detailed process is
elaborated in Materials and Methods. The SOTT consists of
a stretchable substrate, Ag NW electrodes, semiconductor
blends, and a nonpolar elastomer dielectric, which is fabri-
cated throughout a sequential lamination transfer process.
To prepare the stretchable drain and source electrodes, Ag
NWs were spray coated onto an octadecyltrimethoxysilane-
(OTS-) pretreated silica wafer through a shadow mask (i),
then followed by embedding into a nonpolar elastomeric
PDMS substrate (ii). To build an ohmic contact between
the Ag NW electrodes and the semiconductor, the PDMS
substrate with Ag NW electrodes was immersed into
HAuCl4·H2O solution for the formation of gold nanoparti-
cles on the Ag NWs by an in situ reduction method (iii).
Scanning electron microscopy (SEM) images of the stretch-
able Ag NW electrodes before and after immersion into
HAuCl4·H2O solution indicate the successful formation of
gold nanoparticles, as shown in Figure S1. The stretchable
semiconductor blends were prepared by a cooling and
heating process. Briefly, P3HT was dissolved in m-xylene at
70°C and then cooled to room temperature for the formation
of P3HT nanofibrils. After mixing with m-xylene-diluted

PDMS, the P3HT NF solution was subsequently spin-coated
onto the drain-source electrodes through a polyimide
shadow mask to achieve a patterned semiconductor layer
(iv). Contained in the transparent PDMS, the semiconductor
layer has revealed great optical transparency, which is
important for the application in wearable and bionic
electronics (Figure S2). The stretchable dielectric layer,
which is composed of PDMS, was spin-coated onto a
polytetrafluoroethylene (PTFE) block and then transferred
onto the P3HT NF/PDMS semiconductor layer to form the
final SOTT (v and vii). The complete structure of the SOTT
shown in Figure 1(b) was obtained by peeling off the whole
device from the PTFE block (viii), which has demonstrated a
simple structure without a top gate electrode. The channel
length is about 500μm, as shown in Figure 1(c). Since all
components of the device are stretchable, the prepared SOTT
can be stretched both parallel and perpendicular to the
channel directions. Figure 1(d) shows the optical graphs of a
stretched device in two directions. As clearly seen from the
graphs, the device can be deformed without physical damage
upon stretching. Moreover, optical microscopy and atomic
force microscopy (AFM) images of the P3HT NF/PDMS
blends have demonstrated that the semiconductor blends can
be stretched without any obvious cracks under 50% strain, as
shown in Figures 1(e) and 1(f), which is very helpful for
promoting the stretchability of the SOTT.

2.2. Mechanism and Performances of the Stretchable
Tribotronic Transistor. The working mechanism of the SOTT
is presented in Figure 2(a). The drain and source electrodes
of the SOTT are connected with a voltage source. An alumi-
num (Al) film, as an external triboelectric layer, fully contacts
with the dielectric layer in the initial state for electrification as
shown in Figure 2(a), i. The Al film is electrified with positive
charges while the PDMS dielectric layer with negative
charges for the difference in charge affinities. Owing to the
electrostatic balance, electrical potential difference is not
applied to the channel region, and no obvious changes take
place in the drain current. When the Al film gradually sepa-
rates from the PDMS dielectric layer by an external force as
shown in Figure 2(a), ii, negative charges on the dielectric
layer surface will induce an inner charge polarization, which
will build an inner electric field across the channel and the
dielectric surface, leading the holes to accumulate at the
interface of the channel and the dielectric layer. As a result,
an enhancement zone is achieved in the p-type P3HT
NF/PDMS channel, and the drain current is increased. The
enhancement zone and the current will be enhanced until a
maximum separation distance of the Al film is reached.
When the Al film starts to come back to the original station,
the inner electric field will be decreased for the depressed
inner charge polarization, resulting in the previous accumu-
lated holes diffusing away from the interface of the channel
and the dielectric layer. Therefore, the enhancement zone is
depressed, while the hole concentration in the interface and
the drain current are decreased. Once the Al film reaches
its initial state, the hole concentration in the interface and
the drain current recover to the original value. It is worth
noting that a depletion zone will be formed in the channel
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and the current will be decreased when a film with strong
electronegativity contacts and then separates from the PDMS
dielectric layer, such as the fluorinated ethylene propylene
(FEP) film. This is the basic operation mechanism of the
SOTT, which can be equivalent to a circuit in Figure 2(b).
The electrostatic potential generated from the contact electri-
fication between the Al film and the dielectric layer is equiv-
alent to an external gate voltage, which is illustrated in the
energy diagram shown in Figure 2(c). Figure S3 shows the
simulation results of the electrostatic potential generated
from the contact electrification between the Al film and the
dielectric layer, which indicates that the triboelectric
potential is dependent on the separation distance of the Al
film. As shown in Figure S4, the drain current changes with
the reciprocating motion of the Al film, showing a
consistency with the working mechanism that we discussed
above. In addition, we have increased the velocity of the
contact-separation movement, until the time of rise and
fall for the drain current signal is not changed. The
corresponding waveform of Id is shown in Figure S4,
which indicates that the response and recovery times are
80ms and 90ms, respectively, which exhibits that the

device has a small hysteresis and shows a potential of SOTT
to construct sensing electronics.

To better evaluate the performance of the SOTT, the elec-
trical characteristics of the SOTT at a different separation dis-
tance of the Al film without any mechanical stretching are
systematically studied. The separation distance of the Al film
is precisely controlled by a linear motor. Figure 2(d) and
Figure S5 show the relationship between the drain current
and the separation distance. The inset image is the
corresponding transfer characteristics of the SOTT, and the
drain current changes with the traditional gate voltage are
shown in Figure S6. The drain current is obtained at a
drain voltage of -30V. With the separation distance
increases from 0 to 250μm, the drain current is increased
from -4.15μA to -5.55μA. Figure 2(e) contains the output
characteristic curves of the SOTT at a different separation
distance from 0 to 250μm. The drain current increases
with the increasing separation distance, with the drain
voltage swept from 0 to -40V, which is in good accordance
with the working mechanism analyzed above. Moreover, as
shown in Figure 2(f), the current can be modulated by
the periodic contact-separation motion of the external
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Figure 1: Overview of the SOTT. (a) Fabrication process of the SOTT without a top gate electrode. (b) Schematic structure of the
SOTT. (c) Optical images of the SOTT. (d) The stretched SOTT both parallel and perpendicular to the channel directions. (e) Optical
microscope images of P3HT NF/PDMS film at 50% strain, with (f) an AFM phase image showing the morphology of P3HT NF/PDMS film.
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triboelectric layer for more than 600 cycles with little
hysteresis, showing a high stability of the device.

To examine the performances of the SOTT under
mechanical strain, the electrical characteristics of the SOTT
with increasing separation distance are collected by stretch-
ing the devices both parallel and perpendicular to the channel
directions. Note that the SOTT was fabricated with stretch-
able components; the stretching strain distributed in the
device is effectively suppressed and assumed to be distributed

across the whole device, as shown in Figure S7. Figure 3(a)
shows the transfer characteristics of the SOTT under 50%
stretching strain parallel to the channel direction. More
results are illustrated in Figure S8, which has shown that
the SOTT can survive after being stretched parallel to the
channel direction. When the SOTT is stretched up to 50%,
an increase in the drain current from -1.35μA to -1.75μA
is obtained at the separation distance from 0 to 250μm.
Besides, the output characteristic curve of the SOTT at 50%
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Figure 2: Workingmechanism and output characteristics of the SOTT. (a)Working principle of the SOTT. (b) Equivalent circuit and (c) energy
band diagrams of the SOTT. (d) Id changes of the SOTT at different separation distances, the drain-source voltage (Vd) remains -30V. The inset
is the Id‐d transfer characteristics. (e) Id‐Vd output characteristics with different separation distances. (f) Durability test of the SOTT.
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Figure 3: Output characteristics of the stretched SOTT. (a) Id changes with separation distance and (b) output characteristic curve of the
SOTT after 50% mechanical strain was imposed parallel to the channel direction. The inset in (a) is the Id‐d transfer characteristics, and
the insert in (b) is the optical graph of the stretched SOTT. (c) ΔId changes with separation distance at different levels of mechanical
strain in parallel to channel direction. (d) Id changes with separation distance and (e) output characteristic curve of the SOTT after 50%
mechanical strain was imposed perpendicular to the channel direction. The insets in (d) and (e) are the Id‐d transfer characteristics and
optical graphs of the stretched SOTT, respectively. (f) ΔId changes with separation distance at different levels of mechanical strain in
perpendicular to the channel direction.
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strain in the parallel stretching direction is shown in
Figure 3(b). More results are depicted in Figure S9. With the
increases of the separation distance, the drain current rises
within a drain voltage of 0 to -40V for the stretched SOTT.
The insert image in Figure 3(b) is the optical microscope
images of stretched SOTT parallel to the channel direction.
It can be clearly observed that the channel was stretched to
about 600μm without any rupture accrued. On the basis of
these transfer curves, the variations of the drain current at
different separation distance and stretching strain were
calculated, as shown in Figure 3(c). The device can maintain
good performance when the device was stretched by up to
50% parallel to the channel direction.

Compared to the parallel direction stretching, an increase
from -2.42μA to -2.85μA in the drain current was obtained
at the separation distance from 0 to 250μm when the SOTT
was stretched to 50% perpendicular to the channel direction,
as shown in Figure 3(d). The device also has good output
characteristics when the drain voltage swept from 0 to 40V
after being stretched, as shown in Figure 3(e). The transfer
and output characteristics of the SOTT at different stretching
strains from 10% to 40% perpendicular to the channel
direction are shown in Figure S10 and S11, respectively.
Also, the variations of the drain current at different
separation distances and stretching strains perpendicular to
the channel direction were calculated, as depicted in
Figure 3(f). An ideal modulation performance of the SOTT
can be also maintained up to 50% stretching strain.
Moreover, the distance resolution of the SOTT is illustrated
in Figure S12, showing that the SOTT has excellent distance
resolution in the initial state and the stretched state. All these
results suggest that the intrinsically stretchable organic
tribotronic transistor can maintain good output performances
after being stretched, which may promise a bright future of
tribotronics in stretchable smart sensing electronics.

Specifically, the SOTT shows unprecedented robustness
when stretched repeatedly both parallel and perpendicular
to the channel directions. As exhibited in Figure 4(a), only
a small shift can be observed in the transfer characteristics
curves of a SOTT that was cycled to the stretched state. The
normalized maximum current variations during cycling at
50% stretching strain parallel and perpendicular to the
channel directions are exhibited in Figure 4(b). After one
thousand stretching cycles, the current variation at the max-
imum separation distance only decreased by about less than
10% both parallel and perpendicular to the channel direc-
tions, showing a high stretchability of the SOTT. Moreover,
as shown in Figure 4(c), the SOTT can be conformably
attached to the human hand due to its stretchability, which
is very beneficial for skin-inspired devices.

Owing to the simple form of the structure, the merit of
stretchability, and the retention of performance, the SOTT
is very promising for active tactile sensing. Hence, in order
to fulfill the potential of SOTT in active tactile-sensing appli-
cations, the SOTT was used for controlling smart home
devices. As shown in Figure 4(d), the SOTT is integrated on
a finger as a tactile sensor. The finger can be divided into
two states. In the initial state, the finger is so straight that
the SOTT is not stretched. Positive charges will be induced

on the dielectric layer of the SOTT, and a current increase
can be observed when another finger touches the SOTT.
When the finger is bent and the SOTT is stretched, a touch
can still be perceived by the stretched SOTT, which has
shown a high potential of the SOTT as a tactile sensor for a
smart control system regardless of pristine or stretched
states. Through the tactile perception of the SOTT, the
common home devices, such as a table lamp, a bell, and an
electric fan, can be wirelessly controlled by a finger touch,
as shown in Figure 4(e), which presents many potential
applications for the SOTT in daily life, such as the self-care
for the disabled. Moreover, as shown in Figure 4(f), tactile
sensing can promote the function of human-machine inter-
action, such as wirelessly controlling a robot. A SOTT is
directly attached to the finger for robot control. A current
change signal can be observed when the finger touches the
SOTT, which is treated as a tactile-sensing signal. The signal
is the original blinking signal from the SOTT, followed by the
signal after being filtered, amplified, and relay-converted.
Then, the output terminal of the latching relay is connected
with a microcontroller which can send the robot control
instructions through a wireless transmitting module. The
robot posture will be controlled when a signal is received by
the wireless receiving module on the robot. As a response
to the tactile, the robot changes the posture from standing
to crouching, as shown in Figure 4(g). When the SOTT is
in the stretched state, the posture of the robot can still be con-
trolled by a finger touch, as depicted in Figure 4(h), which
has shown great application prospects of the SOTT in smart
interaction. All these results have demonstrated the remark-
able application potential of the SOTT in human-machine
interface, wearable electronics, intelligent skin, and robotics.

3. Conclusions

In summary, we have proposed an intrinsically stretchable
organic tribotronic transistor without a top gate electrode,
which consists of a stretchable substrate, silver nanowire
electrodes, semiconductor blends, and a nonpolar elastomer
dielectric. Using the contact electrification between the Al
film and the PDMS dielectric layer, the drain-source current
of the SOTT is increased (-4.15μA to -5.55μA) as the separa-
tion distance of the Al film goes up (0 to 250μm), with an
excellent stability for more than 600 cycles. Composed of
stretchable materials, the SOTT can be stretched both paral-
lel and perpendicular to the channel directions, with excel-
lent output performances at the strain range from 0 to 50%
along two directions. The SOTT can be stretched for
thousands of cycles with less than 10% decrease in output
performances, showing an excellent robustness of the SOTT.
Moreover, the SOTT can be conformably attached to the
human hand. Through the tactile perception of the SOTT,
the common smart home devices and the robot have been
successfully controlled. This work has realized a stretch-
able tribotronic transistor as the tactile sensor for smart
interaction, which has extended the application of tribo-
tronics in human-machine interface, wearable electronics,
and robotics.
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4. Materials and Methods

4.1. Materials. Anhydrous m-xylene (>99%), acetone
(>99.9%), gold chloride trihydrate (HAuCl4·H2O, >99.9%),
octadecyltrimethoxysilane (OTS), and anhydrous ammonia
(NH4OH, 28%) were all from Sigma-Aldrich and used as
received. Regioregular P3HT (rr-P3HT) was from Xi’an
p-oled company. Ag NW (~99.5%) solution (average diame-

ter and length are 120nm and 20mm, respectively) was from
Jiangsu XFNANO Materials Company and used as received.

4.2. P3HT NW/PDMS Blend Semiconductor Solution.
Regioregular P3HT was dissolved in m-xylene at 70°C and
then cooled to room temperature. PDMS (Dow Corning
SYLGARD 184, crosslinker : prepolymer = 1 : 10 (w/w))
was also dissolved in m-xylene. The two solutions were
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blended together and then aged at room temperature for 1 h
to promote crystalline P3HT formation in the blend solution.
Before spin-coating, the solution was put in a refrigerator
(-15°C) for 30min and then placed on a table to increase its
temperature to 25°C.

4.3. Fabrication of the Stretchable Electrodes. First, the Ag
NW solution was spray coated using a commercial airbrush
through a shadow mask onto a Si wafer that has been
pretreated with octadecyltrimethoxysilane and dried for
10min at 60°C. Then, a PDMS solution [10 : 1 (w/w) prepo-
lymer/curing agent] was spin-coated on the patterned Ag
NW electrodes at 300 rpm for 60 s and followed by curing for
4 hours at 60°C to solidify. The solidified PDMS was peeled
off from the Si wafer, and the patterned AgNWelectrodes were
embedded into the PDMS. To build an ohmic contact between
the electrodes and the semiconductor, the PDMS with
embedded Ag NW electrodes was immersed into 0.5mM
HAuCl4·H2O solution for 2min and then followed by dipping
into NH4OH solution (28%) for 1min. The stretchable elec-
trodes were completed by rinsing in water and drying.

4.4. Fabrication of the SOTT. The P3HT-NF/PDMS blend
solution was spin-coated on the Ag NW electrodes at
2000 rpm for 60 s and dried for 30min at 90°C. Then, a
PDMS (crosslinker : prepolymer = 1 : 10 (w/w)) solution
was spin-coated on a PTFE cube and dried at 60°C overnight
as a dielectric. The PDMS with embedded electrodes and pat-
terned semiconductor were laminated on the PDMS dielec-
tric. Finally, the PDMS dielectric, the semiconductor layer,
and the PDMS dielectric were peeled off together to complete
the SOTT fabrication.

4.5. Material and Device Characterizations. The surface mor-
phology of the P3HT-NF/PDMS composite was character-
ized using an optical microscope (Zeiss, Axioscope AI) and
an AFM (Veeco Dimension 3000) under the tapping mode.
The microstructures of the stretchable electrodes were
characterized by a SEM (XL-30SFEG, Philips). The electric
output characteristics of the devices were measured by using
a Stanford SR570. Cyclic mechanical stretching and releasing
tests were performed by using a linear motor.
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